Lipschitz spaces and Suslin sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suslin Sets

Proof. Suppose z is in the RHS. Then, for some f ∈ Y X , z ∈ Sxfx for all x ∈ X. Hence for each x ∈ X there is y = fx so that z ∈ Sxy, so z is in the LHS. Suppose z is in the LHS. Then for each x ∈ X there is some y ∈ Y so that z ∈ Sxy. Hence for each x ∈ X the set Tx = { y : z ∈ Sxy } is not empty. By AC there is a function f ∈ Y x so that, for all x ∈ X, fx ∈ Tx. Hence, for all x ∈ X, z ∈ Sxf...

متن کامل

Homogeneously Suslin sets in tame mice

This paper studies homogeneously Suslin (hom) sets of reals in tame mice. The following results are established: In 0¶ the hom sets are precisely the ̃ 11 sets. In Mn every hom set is correctly ̃ 1n+1, and (δ + 1)-universally Baire where δ is the least Woodin. In Mω every hom set is <λ-hom, where λ is the supremum of the Woodins. §

متن کامل

Lipschitz Spaces and M -ideals

For a metric space (K, d) the Banach space Lip(K) consists of all scalar-valued bounded Lipschitz functions on K with the norm ‖f‖L = max(‖f‖∞, L(f)), where L(f) is the Lipschitz constant of f . The closed subspace lip(K) of Lip(K) contains all elements of Lip(K) satisfying the lip-condition lim0<d(x,y)→0 |f(x) − f(y)|/d(x, y) = 0. For K = ([0, 1], | · |), 0 < α < 1, we prove that lip(K) is a p...

متن کامل

Lipschitz Spaces and Harmonic Mappings

In [11] the author proved that every quasiconformal harmonic mapping between two Jordan domains with C, 0 < α ≤ 1, boundary is biLipschitz, providing that the domain is convex. In this paper we avoid the restriction of convexity. More precisely we prove: any quasiconformal harmonic mapping between two Jordan domains Ωj , j = 1, 2, with C, j = 1, 2 boundary is bi-Lipschitz.

متن کامل

Lipschitz - free Banach spaces

We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y , then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipsch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1981

ISSN: 0022-1236

DOI: 10.1016/0022-1236(81)90090-2